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A general multistage procedure for
k-out-of-n gatekeeping
Dong Xia*† and Ajit C. Tamhaneb

We generalize a multistage procedure for parallel gatekeeping to what we refer to as k-out-of-n gatekeeping
in which at least k out of n hypotheses (1 6 k 6 n) in a gatekeeper family must be rejected in order to test
the hypotheses in the following family. This gatekeeping restriction arises in certain types of clinical trials; for
example, in rheumatoid arthritis trials, it is required that efficacy be shown on at least three of the four primary
endpoints. We provide a unified theory of multistage procedures for arbitrary k, with k D 1 corresponding to
parallel gatekeeping and k D n to serial gatekeeping. The theory provides an insight into the construction of trun-
cated separable multistage procedures using the closure method. Explicit formulae for calculating the adjusted
p-values are given. The proposed procedure is simpler to apply for this particular problem using a stepwise algo-
rithm than the mixture procedure and the graphical procedure with memory using entangled graphs. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. Introduction

Research on gatekeeping procedures has flourished over the past decade as they are increasingly used in
clinical trials involving tests of multiple null hypotheses, which can be hierarchically grouped into m > 2

ordered families, F1; : : : ; Fm. Hierarchical ordering is induced by the so-called gatekeeping restrictions;
for example, efficacy on secondary endpoints cannot be tested unless efficacy on primary endpoints is
demonstrated, or superiority cannot be tested unless noninferiority is established. In general, hypotheses
in families Fj for j > i are retained (accepted) without tests if a specified gatekeeping restriction on the
rejection of hypotheses in family Fi is not met. Family Fi is called a gatekeeper for family FiC1 and by
extension to all families Fj for j > i .

The earliest works [1, 2] dealt with the serial gatekeeping problem in which the gatekeeping condi-
tion was that all the hypotheses in the gatekeeper family are rejected. Dmitrienko et al. [3] considered
the parallel gatekeeping problem in which the gatekeeping condition was that at least one hypothesis in
the gatekeeper family is rejected. Dmitrienko et al. [4] generalized the serial and parallel gatekeeping
problems to the tree gatekeeping problem. These authors proposed procedures on the basis of the closure
method of Marcus et al. [5] and which used weighted Bonferroni tests for the intersection hypotheses.
Dmitrienko et al. [6–8] proposed mixture gatekeeping procedures on the basis of the closure method,
which generalized the scope of the tree gatekeeping procedures. Bretz et al. [9,10] proposed a graphical
approach to gatekeeping. Recently, Maurer and Bretz [11] have developed a graphical approach with
memory that deals with general logical restrictions of the type handled by mixture procedures.

Dmitrienko et al. [6–8] noted that tree gatekeeping cannot be used to specify the k-out-of-n gatekeep-
ing restriction for general k. As an example, consider the Food and Drug Administration Guidance for
Industry on rheumatoid arthritis [12], which states that ‘: : : trial results were considered to support a
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conclusion of effectiveness when statistical evidence of efficacy was shown for at least three of the four
measures : : :.’ There is an additional requirement that this condition must be met in at least four of the
six monthly visits, but development of a procedure that meets this second condition is not considered in
the present paper.

Dmitrienko et al. [6–8] used restriction functions to deal with general types of logical restrictions in
mixture procedures. However, mixture procedures, being closed multiple test procedures (MTPs), do not
have obvious stepwise shortcuts. Maurer and Bretz [11] gave an example of the graphical approach for
k D 3 and n D 4. It involves taking a convex combination of four graphs (called entangled graphs). If one
restricts to standard p-value-based MTPs of Holm [13], Hochberg [14], and Hommel [15], the proposed
procedure is easier to describe and perform than the mixture procedure and the entangled graphical pro-
cedure with memory. We have also extended the methods to the fallback MTP [16, 17] and the Dunnett
MTP [18], but we do not give those extensions here for lack of space.

The MTPs used to test individual families Fi are called component MTPs, which together constitute
the multistage gatekeeping procedure. Maurer et al. [1] showed that the familywise error rate (FWER)
is strongly controlled (1) for the serial gatekeeping problem by using a multistage MTP that tests each
family Fi using a component MTP at level ˛ and proceeds to test FiC1 iff all hypotheses in Fi are
rejected (i D 1; : : : ; m � 1).

For parallel gatekeeping, Dmitrienko et al. [3] proposed a closed MTP, which used the weighted
Bonferroni test for all intersection hypotheses and accounted for the parallel gatekeeping restriction by
assigning suitable weights to the hypotheses in each intersection. Dmitrienko et al. [19] showed that this
closed MTP has a multistage shortcut, which uses the Bonferroni MTPs for the first m � 1 families and
the Holm MTP for the last family. Guilbaud [20] showed that this multistage procedure can be derived
directly (without recourse to the closure principle) and the Holm MTP can be replaced by any FWER
controlling MTP in the last family. Dmitrienko et al. [21] showed that any separable MTP, which is
more powerful than the Bonferroni MTP, can be used as a component MTP in the first m � 1 families.
We generalize this multistage procedure in the present paper.

The outline of the paper is as follows. Section 2 extends the definition of separability introduced in
[21] for parallel gatekeeping (k D 1) to arbitrary k; we refer to it as k-separability. Section 3 derives k-
separable truncated stepwise MTPs called k-truncated MTPs. Section 4 states the generalized k-out-of-n
gatekeeping MTP. Section 5 derives adjusted p-values for this MTP. Section 6 applies the procedures to
the rheumatoid arthritis example. Section 7 gives a discussion of the results. The Appendix includes all
the proofs.

2. Error rate function and separability

From now to Section 3, we will consider a single family F of n hypotheses, H1; : : : ; Hn, with p-
values p1; : : : ; pn. We shall return to the multifamily gatekeeping setting in Section 4. Throughout, we
shall assume that the pi are uniformly distributed over Œ0; 1� under the respective null hypotheses Hi

(i D 1; : : : ; n). For the Hochberg and the Hommel procedures, we will assume independence or positive
regression dependence among the pi ’s to ensure that the Simes test [22] remains conservative [23, 24].
Let p.1/ 6 � � � 6 p.n/ denote the ordered p-values and let H.1/; : : : ; H.n/ denote the corresponding
hypotheses.

We require any MTP to strongly control [25] FWER; that is, for any specified ˛,

FWER D sup
H.I/

P fReject at least one true Hi ; i 2 I jH.I/g 6 ˛ (1)

where the supremum is taken over the subset of the parameter space where H.I/ D T
i2I Hi holds for

all intersection hypotheses and I � f1; : : : ; ng is an arbitrary nonempty index set.
Dmitrienko et al. [21] introduced the error rate function to construct multistage MTPs for parallel

gatekeeping. The error rate function of an MTP with nominal FWER ˛ is defined as

e.I j ˛/ D sup
H.I/

P

"[
i2I

fReject Hig j H.I/

#

It is the maximum probability of at least one false rejection of Hi ; i 2 I when using an MTP controlling
FWER at level ˛. In addition, e.;j˛/ D 0, and we can set e.N j˛/ D ˛.
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In general, the error rate function is difficult to calculate exactly especially when the test statistics are
correlated. Therefore, we use an easily computable upper bound instead but continue to regard it as the
true error rate function of the MTP and still denote it by e.I j ˛/. For the Bonferroni MTP, this upper
bound equals e.I j ˛/ D .jI j=n/˛.

For parallel gatekeeping, Dmitrienko et al. [21] defined an ˛-level MTP to be separable if its error
rate function satisfies

e.I j ˛/ < ˛ if jI j < n; e.I j ˛/ D ˛ if jI j D n (2)

where jI j is the cardinality of the index set I . Obviously, the Bonferroni MTP is separable, but it is
known from [21] that the Holm, Hochberg, and Hommel stepwise MTPs are not separable.

For the k-out-of-n gatekeeping problem, we generalize the definition (2) as follows. An ˛-level MTP
is said to be k-separable if its error rate function satisfies

e.I j ˛/ < ˛ if jI j 6 n � k; e.I j ˛/ D ˛ if jI j > n � k (3)

In the sequel, we will see that the k-separability condition ensures that a positive significance level
6 ˛ can be carried over to the following family iff at least k hypotheses are rejected; that is, no more
than n � k hypotheses is accepted, in the gatekeeper family. For k D 1, this definition reduces to the
separability definition (2), whereas for k D n, this definition is vacuous, which agrees with the fact that
separability is not required for serial gatekeeping because full ˛ is carried over to the next family iff all
n hypotheses are rejected.

3. k-Truncated separable multiple test procedures

3.1. Closed multiple test procedures

The Holm, Hochberg, and Hommel stepwise MTPs are more powerful than the Bonferroni MTP, but
they cannot be used to test gatekeeper families (except for serial gatekeepers) because they are not k-
separable for any k < n. For parallel gatekeeping, Dmitrienko et al. [21] proposed truncated versions
of these stepwise MTPs to make them separable and still be more powerful than the Bonferroni MTP.
These truncated MTPs use convex combinations of the critical constants of the original stepwise MTPs
and the Bonferroni MTP. For example, for a prespecified truncation parameter � 2 Œ0; 1/, the truncated
Holm MTP tests and rejects H.i/ for i D 1; 2; : : : ; n, as long as

p.i/ 6
�

�

n � i C 1
C 1 � �

n

�
˛:

It stops at the first step for which this inequality is violated and accepts all the remaining hypotheses.
The Hochberg and Hommel MTPs can be similarly modified.

In order to satisfy the k-separability condition (3), we need to use a closed MTP, which tests each
intersection hypothesis H.I/ at local level ˛.I / such that ˛.I / < ˛ if jI j 6 n � k and ˛.I / D ˛ if
jI j > n � k. Any function ˛.I /, which satisfies this condition, can be used to construct a k-truncated
separable MTP. It is convenient to use the following function parameterized by a truncation parameter
� 2 Œ0; 1/:

˛.I / D
( h

� C .1��/m
n�kC1

i
˛ if 1 6 m 6 n � k

˛ if m > n � k
(4)

where we have denoted jI j D m. The reason for using this parametric function is that it can be used to
construct truncated stepwise MTPs such as the truncated Holm MTP given earlier, which depends on
a single parameter � . When � D 1, this function gives the untruncated MTP, and when � D 0, it tests
H.I/ for jI j 6 n�k at a truncated level jI j=.n�k C1/�˛. We will give some comments on the choice
of � later in this section.

The error rate function of the closed MTP using this form of ˛.I / is given by

e.I j ˛/ D
�

0 if m D 0

˛.I / if m > 0
(5)

It is easy to see that e.I j ˛/ satisfies the k-separability condition.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335
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Dmitrienko et al. [21] showed that if a gatekeeper family is tested using an MTP at level ˛ with error
rate function e.I j ˛/ and if A is the index set of the accepted hypotheses, then the significance level
transferred to the next family equals ˛ � e.A j ˛/. Thus, if jAj > n � k, that is, if less than k hypotheses
are rejected, then ˛ � e.A j ˛/ D 0, and so testing stops with acceptance of all the remaining hypotheses
thus satisfying the k-out-of-n gatekeeping condition.

For parallel gatekeeping (k D 1), one must use a separable MTP to test all hypotheses in a gatekeeper
family, whereas for serial gatekeeping (k D n), a non-separable MTP can be used. For 1 < k < n, we
need to switch from an untruncated MTP to a k-truncated MTP after k hypotheses are rejected in the
case of a step-down MTP or from a k-truncated MTP to an untruncated MTP after n � k hypotheses are
accepted in the case of a step-up MTP. In the following sections, we will present k-truncated versions of
the Holm, Hochberg, and Hommel MTPs; we give their derivations in the Appendix.

The choice of � for the primary family is somewhat subjective. It is easy to check that e.I j˛/ defined
in (5) is an increasing function of � , and therefore, the significance level transferred to the secondary
family is a decreasing function of � . Thus, increasing � gains power for the primary family at the expense
of the secondary family. To strike a balance, we usually use � D 0:5, but a larger � may be used if more
rejections are desired in the primary family.

The choice of k is of course dictated by clinical considerations rather than statistical considerations.
We note in passing, however, that ˛.I / is an increasing function of k, and so the number of rejected
primary hypotheses will increase with k.

3.2. k-Truncated Holm multiple test procedure

The k-truncated Holm MTP operates as follows. Begin testing with H.1/. In general, if all H.j / for j < i

are rejected, then test H.i/ and reject it if

p.i/ 6

8<:
˛

n�iC1
if 1 6 i 6 k�

�
n�iC1

C 1��
n�kC1

�
˛ if k < i 6 n

(6)

and proceed to the next step. Otherwise, accept H.i/ and all the remaining hypotheses. Thus, use the
untruncated Holm MTP until k hypotheses are rejected, and then switch to the k-truncated Holm MTP.

Theorem 1
The k-truncated Holm MTP is an exact shortcut to the closed MTP, which rejects each intersection
hypothesis H.I/ if

pi 6 ˛.I /=m for at least one i 2 I (7)

where ˛.I / is given by (4). Because this closed MTP tests each H.I/ at level ˛.I / using the Bonferroni
test, (5) gives the exact error rate function of the k-truncated Holm MTP.

Let A denote the index set of the accepted hypotheses and let r D n � jAj denote the number of
rejected hypotheses. Then from (5), we see that the significance level transferred to the next family is
given by

˛ � e.A j ˛/ D

8̂<̂
:

˛ if r D n

r�kC1
n�kC1

.1 � �/˛ if k 6 r < n

0 if r < k

(8)

Note that if all n hypotheses are rejected, then the full ˛ level is transferred to the next family, whereas
if less than n but greater than k hypotheses are rejected, then the ˛ level transferred to the next family
is proportional to the the number of hypotheses rejected in excess of k � 1 with .1 � �/˛=.n � k C 1/

level transferred for each such rejected hypothesis. This comes from the Bonferroni part of the truncated
Holm MTP. When all n hypotheses are rejected, there is an additional increase of �˛ level coming from
the Holm part.

Bretz et al. [9] showed that the Holm MTP can be represented graphically so that the significance
level assigned to any rejected hypothesis is transferred to unrejected hypotheses within the same family.
If all hypotheses in the primary family are rejected, then the full significance level at which the last
hypothesis is tested and rejected is transferred to the secondary family. Clearly, if less than k hypotheses
are rejected, then no ˛ level is transferred to the next family.
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3.3. Li’s truncated Holm multiple test procedure

Li [26] proposed a general truncated Holm MTP for parallel gatekeeping, which uses n prespecified
non-negative constants, "1; : : : ; "n, such that

Pn
iD1 "i D ˛ and "0 D 0. In general, Li’s MTP tests and

rejects H.i/ if all H.j / for j < i are rejected and

p.i/ 6 ˛ � "0 � "1 � � � � � "i�1

n � i C 1
.i D 1; : : : ; n/:

If H.i/ is rejected, then "i is transferred to the next family, and the remaining level is used to test
H.iC1/ .i D 1; : : : ; n � 1). If H.iC1/ is accepted, then all the remaining hypotheses are also accepted,
and the significance level equals to "1 C � � � C "i is transferred to test the next family. If all n hypotheses
are rejected, then the total significance level transferred to the next family equals

Pn
iD1 "i D ˛. If no

hypothesis is rejected, then, of course, no significance level is transferred to the next family, thus satis-
fying the parallel gatekeeping condition. Note that if "i D 0 for i < k and "i > 0 for i > k, then this
MTP satisfies the k-out-of-n gatekeeping condition.

Li’s truncated Holm MTP is also an exact shortcut to a closed MTP that uses the Bonferroni test
as local test of intersection hypotheses. To ensure consonance and thus a shortcut, the monotonicity
condition of [27] requires that

˛

n
6 ˛ � "1

n � 1
6 � � � 6 ˛ � "1 � � � � � "n�1

1
:

The choice of "1; : : : ; "n subject to the aforementioned constraint is more difficult than the choice of a
single � . For the k-out-of-n gatekeeping condition, the two choices can be made equal if we choose

"1 D � � � D "k�1 D 0; "k D � � � D "n�1 D .1 � �/˛

n � k C 1
; "n D �˛ C .1 � �/˛

n � k C 1
:

In the special case k D n � 1, we see that "n�1 D .1 � �/˛=2 and "n D .1 C �/˛=2. Thus, for the first
n � 1 steps, we use the untruncated Holm MTP, and only in the last step, we use the truncated Holm
MTP with the critical constant .1 C �/˛=2 instead of ˛ for comparing with p.n/.

3.4. k-Truncated Hochberg multiple test procedure

The k-truncated Hochberg MTP uses the same critical constants as the k-truncated Holm MTP (6) but
operates in the reverse order as follows. Begin testing with H.n/. In general, if all H.j / for j > i are
accepted, then test H.i/ and reject it if

p.i/ 6

8<:
˛

n�iC1
if 1 6 i 6 k�

�
n�iC1

C 1��
n�kC1

�
˛ if k < i 6 n

(9)

If H.i/ is rejected, then reject all the remaining hypotheses; otherwise, proceed to the next step. Thus,
until n�k hypotheses are accepted, we apply the k-truncated Hochberg MTP, and then we switch to the
untruncated Hochberg MTP.

Theorem 2
The k-truncated Hochberg MTP is an exact shortcut to the closed MTP, which rejects each intersection
hypothesis H.I/ if, for at least one i 2 I ,

p.i/ 6

8̂̂̂<̂
ˆ̂:

�
�

m�iC1
C 1��

n�kC1

�
˛ if 1 6 i 6 m; m 6 n � k�

�
m�iC1

C 1��
n�kC1

�
˛ if m C 1 � .n � k/ 6 i 6 m; m > n � k

˛
m�iC1

if 1 6 i < m C 1 � .n � k/; m > n � k

(10)

This k-truncated Hochberg MTP is more conservative than the closed MTP, which tests each H.I/ at
level ˛.I / using critical constants ˛.I /=i .i D 1; : : : ; m/, where ˛.I / is given by (4). Hence, (5) is an
upper bound on its exact error rate function.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335
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3.5. k-Truncated Hommel multiple test procedure

For parallel gatekeeping, Brechenmacher et al. [28] proposed a truncated Hommel MTP. The following
is its generalization to a k-truncated Hommel MTP.

� Step 1. Accept H.n/ if

p.n/ >

�
� C 1 � �

n � k C 1

�
˛I

otherwise, reject all hypotheses and stop.
� Step i D 2; : : : ; n � k. Accept H.n�iC1/ and go to the next step if

p.n�iCj / >

�
j �

i
C 1 � �

n � k C 1

�
˛ .j D 1; : : : ; i/I

otherwise, stop and reject any hypothesis H.j / satisfying

p.j / 6
�

�

i � 1
C 1 � �

n � k C 1

�
˛:

� Step i D n � k C 1; : : : ; n. Accept H.n�iC1/ and go to the next step if

p.n�iCj / >
j˛

i
.j D 1; : : : ; i/I

otherwise, stop and reject any hypothesis H.j / satisfying

p.j / 6 ˛

i � 1
:

Theorem 3
The k-truncated Hommel MTP is an exact shortcut to the closed MTP, which rejects each intersection
hypothesis H.I/ if, for at least one i 2 I ,

p.i/ 6

8<:
�

i�
m

C 1��
n�kC1

�
˛ if 1 6 m 6 n � k

i˛
m

if m > n � k
(11)

This k-truncated Hommel MTP is more conservative than the closed MTP, which tests each H.I/ at
level ˛.I / using the Simes test, where ˛.I / is given by (4). Hence, (5) is an upper bound on its exact
error rate function.

Simple algebra shows that, for the same k and � , the critical constants used to compare p.i/ with are
ordered from the largest to the smallest, respectively, in the tests (11), (10), and (7) of the intersection
hypothesis H.I/. Hence, the truncated Hommel MTP is more powerful than the truncated Hochberg
MTP, which in turn is more powerful than the truncated Holm MTP.

4. Generalized multistage multiple test procedure for k-out-of-n gatekeeping

In this section, we apply the k-truncated MTPs derived in the previous section to construct a gen-
eralization of the multistage MTP proposed in [21] for parallel gatekeeping to k-out-of-n gatekeep-
ing. Suppose that the hypotheses, H1; : : : ; Hn, are grouped into m-ordered families, F1; : : : ; Fm. Let
Fi D ˚

Hj ; j 2 Ni

�
consist of ni hypotheses where N1 D f1; : : : ; n1g and

Ni D fn1 C � � � C ni�1 C 1; : : : ; n1 C � � � C ni g .i D 2; : : : ; m/:

Suppose further that, for each Fi .i D 1; : : : ; m � 1/, a ki -out-of-ni gatekeeping condition is specified
where 1 6 ki 6 ni . We require an MTP that satisfies the strong FWER control requirement (1) for the
overall family F D Sm

iD1 Fi subject to the specified gatekeeping conditions.
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We propose the following multistage MTP. Let ˛1 D ˛. At the i th stage (i D 1; : : : ; m � 1), test the
hypotheses in family Fi using any ki -separable MTP Pi at level ˛i . Let Ai � Ni be the index set of the
accepted hypotheses Hj 2 Fi . Set

˛iC1 D ˛i � ei .Ai j ˛i / .i D 1; : : : ; m � 1/ (12)

where ei .Ai j˛i / is the error rate function of Pi . For i D 1; : : : ; m � 1, if ˛iC1 > 0, then proceed to test
family FiC1 at level ˛iC1 using a kiC1-separable MTP PiC1. For Fm, use any non-separable MTP Pm

at level ˛m if ˛m > 0. If ˛iC1 D 0, then stop testing and accept all the remaining hypotheses. Because Pi

is ki -separable, ˛iC1 D 0 iff jAi j > ni � ki , that is, iff less than ki hypotheses in family Fi are rejected.

Theorem 4
The generalized multistage MTP stated earlier satisfies the strong FWER control requirement (1).

5. Adjusted p-values

For simplicity, we consider two families, F1 D fH1; : : : ; Hn1
g and F2 D fHn1C1; : : : ; Hn1Cn2

g, with
F1 being a k1-out-of-n1 gatekeeper for F2. First, let us focus on the adjusted p-values for primary
hypotheses. For k1-truncated Holm MTP and Hochberg MTP, the adjusted p-values are obtained by
simply extending their corresponding formulae for the untruncated case; see, for example, [29, p. 68].
Thus, the adjusted p-values ep.i/ for hypotheses H.i/ .i D 1; : : : ; n1/ for the k1-truncated Holm MTP
with the truncation parameter � are given by

ep.i/ D

8̂̂<̂
:̂

min f1; n1p.1/g if i D 1

minf1; max f Qp.i�1/; .n1 � i C 1/p.i/gg if i D 2; : : : ; k1 � 1

min
n
1; max

n
Qp.i�1/; p.i/=

�
�

n1�iC1
C 1��

n1�k1C1

�oo
if i D k1; : : : ; n1

(13)

Similarly, the adjusted p-values for the k1-truncated Hochberg MTP are given by

ep.i/ D

8̂̂̂<̂
ˆ̂:

min
n
1; p.n1/=

�
�

n1�iC1
C 1��

n1�k1C1

�o
if i D n1

min
n

Qp.iC1/; p.i/=
�

�
n1�iC1

C 1��
n1�k1C1

�o
if i D n1 � 1; : : : ; k1

min f Qp.iC1/; .n1 � i C 1/p.i/g if i D k1 � 1; : : : ; 1

(14)

Wright [30] gave an algorithm for computing the adjusted p-values for the untruncated Hommel MTP.
However, that algorithm seems difficult to extend to the k-truncated Hommel MTP, so we computed the
adjusted p-values by numerical search by a method analogous to the one given in [21].

Next, we derive expressions for the adjusted p-values epj of secondary hypotheses Hj .j D
n1 C 1; : : : ; n1 C n2/ given the adjusted p-values epi of primary hypotheses Hi .i D 1; : : : ; n1/.
First, consider the simplest case where the primary family is a serial gatekeeper (k1 D n1). In that
case, we use untruncated MTPs in both the primary and the secondary families. In fact, because all pri-
mary hypotheses must be rejected to pass the primary gate, the adjusted p-value for the primary gate
equals p� D maxiD1;:::;n1

ep.i/. In particular, for the untruncated Hochberg and the Hommel MTPs,
p� D ep.n1/ D p.n1/. To define the adjusted p-values for the secondary hypotheses, let Npj denote the
adjusted p-value of a secondary hypothesis Hj , adjusted for the MTP P2 used within F2 but not adjusted
for primary gatekeeping. Then, we have

epj D max.p�; Npj /; .j D n1 C 1; : : : ; n1 C n2/:

Next, consider the case 1 6 k1 < n1. Let r1 D ]fepi 6 ˛ .i D 1; : : : ; n1/g denote the number of
rejected hypotheses in F1. We begin with the observation that if r1 < k1, then all secondary hypotheses
Hj are accepted without a test, and if r1 > k1, then Hj is rejected iff Npj 6 ˛2, which, by substituting
from (8), is equivalent to

.n1 � k1 C 1/ Npj

.1 � �/.r1 � k1 C 1/
6 ˛:

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335
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Note that epj is the smallest ˛ that results in r1 rejections in F1 and satisfies the aforementioned inequal-
ity. Determination of this smallest ˛ requires careful checking of the conditions that ˛ must satisfy. This
is performed in the following theorem.

Theorem 5
If 1 6 k1 < n1, then the adjusted p-values epj of the secondary hypotheses Hj .j D n1C1; : : : ; n1Cn2/

for different ranges of the values of Npj are given by the following expressions:

epj D ep.k1/ if Npj 6 .1 � �/ep.k1/

n1 � k1 C 1
(15)

If

.1 � �/ep.k1/

n1 � k1 C 1
< Npj <

.1 � �/.n1 � k1/ep.n1�1/

n1 � k1 C 1

then define r1 as the smallest value of r .r D k1; : : : ; n1 � 2/ that satisfies the inequality

.1 � �/.r � k1 C 1/ep.r/

n1 � k1 C 1
6 Npj <

.1 � �/.r � k1 C 2/ep.rC1/

n1 � k1 C 1
(16)

Then epj is given by

epj D

8̂<̂
:

.n1�k1C1/ Npj

.1��/.r1�k1C1/
if

.1��/.r1�k1C1/ep.r1/

n1�k1C1
6 Npj <

.1��/.r1�k1C1/ep.r1C1/

n1�k1C1

ep.r1C1/ if
.1��/.r1�k1C1/ep.r1C1/

n1�k1C1
6 Npj <

.1��/.r1�k1C2/ep.r1C1/

n1�k1C1

(17)

Otherwise, if

Npj > .1 � �/.n1 � k1/ep.n1�1/

n1 � k1 C 1

then

epj D

8̂̂̂̂
<̂
ˆ̂̂:

.n1�k1C1/ Npj

.1��/.n1�k1/
if

.1��/.n1�k1/ep.n1�1/

n1�k1C1
6 Npj <

.1��/.n1�k1/ep.n1/

n1�k1C1

ep.n1/ if
.1��/.n1�k1/ep.n1/

n1�k1C1
6 Npj < ep.n1/

Npj if Npj > ep.n1/

(18)

Remark 1
Contrary to what one might expect, the aforementioned expressions do not simplify for parallel gatekeep-
ing because one must begin by checking (15) for k1 D 1. Dmitrienko et al. [21] suggested a numerical
search method in this case to find the smallest ˛ to reject each Hj .j D n1 C1; : : : ; n1 Cn2/. The closed
formulae given here offer an easier method of calculation. If k1 D n1 � 1, then the epj are given by (18).

6. Example

We return to the rheumatoid arthritis trial example given in Section 1. There are four primary end-
points: physician global assessment .H1/, patient global assessment .H2/, swollen joint count .H3/,
and painful joint count .H4/. Aaltonen et al. [31] mentioned multiple secondary endpoints, but we will
consider only one: American College of Rheumatology 50% improvement at 6 months (H5). Thus,
F1 D fH1; H2; H3; H4g and F2 D fH5g. As stated in Food and Drug Administration guidance [12], we
will assume that at least three out of four primary endpoints must demonstrate efficacy; that is, k1 D 3.
Suppose that the raw p-values for the five hypotheses are as follows:

p1 D 0:01; p2 D 0:02; p3 D 0:024; p4 D 0:04; p5 D 0:01;

and ˛ D 0:05.
We will compare truncated Holm (T-HOLM), truncated Hochberg (T-HOCH), and truncated Hommel

(T-HOML) procedures where all truncated MTPs use � D 0:5 and k1 D 3. In this setting, Li’s method
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is the same as the T-HOLM. The critical constants for each hypothesis for the T-HOLM and T-HOCH
procedures are given in Table I. The critical matrix for T-HOML is as given in Table II. Because we used
the untruncated MTP to test H1; H2; H3, the critical constant of the respective truncated MTP differs
only for H4. This critical constant is�

0:5

4 � 4 C 1
C 0:5

4 � 3 C 1

�
0:05 D 0:0375;

whereas for the untruncated MTPs, it is 0.05.
First, we apply T-HOLM to F1. In Step 1, H1 is rejected because p1 D 0:01 6 0:0125, but H2 cannot

be rejected because p2 D 0:02 > 0:0167. So H3 and H4 are also accepted. No significance level will be
transferred to F2 because only H1 is rejected by T-HOLM, and thus, H5 is also accepted without test.

Next, we apply T-HOCH to F1. In Step 1, H4 is accepted because p4 D 0:04 > 0:0375, but H3

is rejected because p3 D 0:024 6 0:025. So H2 and H1 are also rejected. Because T-HOCH rejects
H3; H2, and H1, using (12) and (5), we calculate the significance level transferred to F2 as

˛2 D ˛ �
�
� C .1 � �/jA1j

n1 � k1 C 1

	
˛ D 0:05 �

�
0:5 C 0:5 � 1

4

	
.0:05/ D 0:0125:

Because p5 D 0:01 6 ˛2 D 0:0125, T-HOCH rejects H5.
Finally, we apply T-HOML to F1. In Step 1, H4 is accepted because p4 D 0:04 > 0:0375, but it

rejects all the remaining hypotheses with p-values less than 0.0375 because p3 D 0:024 6 0:025. So it
rejects H3; H2, and H1. Because T-HOML makes the same rejections as T-HOCH, it also rejects H5.

Table III shows the adjusted p-values of all hypotheses for the three MTPs calculated using the for-
mulae (13) and (14) for the primary hypotheses and Theorem 5 for the secondary hypotheses. Note that
they agree with the rejection decisions obtained by stepwise applications of these MTPs at ˛ D 0:05. In
addition, adjusted p-values of T-HOML are less than or equal to those of T-HOCH, although they lead
to the same rejections. Figure 1 shows ep5 as a function of Np5 for this example. Note that the three MTPs
share the same figure because they differ only in the adjusted p-values for the primary hypotheses.

In summary, T-HOLM is not able to win on the 3-out-of-4 win criterion on the primary endpoints and
hence does not go on to test the secondary endpoint. T-HOCH and T-HOML win on the 3-out-of-4 win

Table I. Critical constants for truncated Holm and truncated Hochberg.

MTP H1 H2 H3 H4

T-HOLM 0:0125 0:0167 0:025 0:0375

T-HOCH 0:0125 0:0167 0:025 0:0375

MTP, multiple test procedure; T-HOLM, truncated Holm; T-HOCH, truncated Hochberg.

Table II. Critical matrix for truncated Hommel.

CT-HOML D

0BB@
0:0375

0:0375 0:0250

0:0500 0:0333 0:0167

0:0500 0:0375 0:0250 0:0125

1CCA
T-HOML, truncated Hommel.

Table III. Adjusted p-values.

MTP H1 H2 H3 H4 H5

T-HOLM 0.040� 0.060 0.060 0.060 0.060
T-HOCH 0.040� 0.048� 0.048� 0.054 0.048�
T-HOML 0.032� 0.040� 0.048� 0.054 0.048�

MTP, multiple test procedure; T-HOLM, truncated Holm; T-HOCH, truncated
Hochberg; T-HOML, truncated Hommel.
� The adjusted p-values significant at the 0.05 level are marked with an asterisk.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335
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Figure 1. Qp5 as a function of Np5.

criterion on the primary endpoints, and both declare a significant result on the secondary endpoint. Note
that the adjusted p-values for T-HOLM, T-HOCH, and T-HOMM are in non-increasing order for each
hypothesis corresponding to decreasing order of their powers noted previously.

7. Discussion

In this paper, we have extended the separability concept introduced in [21] for parallel gatekeeping to
k-separability for 1 6 k 6 n. Using this concept, we have shown how to construct k-separable MTPs
and incorporate them into a general multistage MTP thus providing a unified framework for any k-out-
of-n gatekeeping problem ranging from parallel gatekeeping (k D 1) to serial gatekeeping (k D n). A
novel feature of a k-separable MTP is that it is a hybrid MTP, which switches between a k-truncated
MTP and an untruncated MTP. We have applied this general methodology to derive k-separable ver-
sions of the Holm, Hochberg, and Hommel MTPs. We have also derived explicit expressions for the
adjusted p-values of the secondary hypotheses when the primary family is a k-out-of-n gatekeeper.
Such expressions were not available before even for k D 1.

It is to be noted that k-out-of-n gatekeeping does not cover the most general types of logical restric-
tions in which testability of a secondary hypothesis depends upon whether certain individual primary
hypotheses are rejected or not. Mixture procedures handle such logical restrictions via the so-called
restriction functions, but the resulting closed procedures do not have multistage shortcuts.

Appendix

In this appendix, we give derivations of the k-truncated MTPs from Section 3 and proofs of their FWER
control. We first review a result used in the sequel that characterizes the conditions under which closed
MTPs have a step-down or a step-up shortcut [32].

As in Section 2, without loss of generality, we will denote any nonempty subset I of the index
set N D f1; 2; : : : ; ng by f1; 2; : : : ; mg. Let p.1/ 6 � � � 6 p.m/ denote the ordered p-values and let
H.1/; : : : ; H.m/ denote the corresponding hypotheses. Let H.I/ D T

i2I Hi . Suppose that there exist
critical constants cm1 > � � � > cmm such that

P
˚
p.1/ > cmm˛; : : : ; p.m/ > cm1˛ jH.I/

�
> 1 � ˛ (A.1)

Then the ˛-level local test of H.I/ is reject H.I/ if

p.m�iC1/ 6 cmi˛ for at least one i D 1; : : : ; m (A.2)

We can determine the critical constants cmi by assuming that p.1/ 6 � � � 6 p.m/ are order statistics from
a uniform Œ0; 1� distribution under H.I/.

Let C denote an n � n lower-triangular matrix with entries cmi .i D 1; : : : ; m; m D 1; : : : ; n/. Liu
[32] showed that the closure MTP based on (A.1) has a step-down shortcut if the row entries of C are
equal and a step-up shortcut if the column entries are equal. For a step-down MTP, the critical constants
for comparing the ordered p-values are given by the first column .c11; : : : ; cn1/ of C and for a step-up
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MTP by the last row .cn1; : : : ; cnn/ of C . For the Holm [13] MTP, the local test is the Bonferroni test
with cmi D 1=m, so the row entries of C are equal, which makes the Holm MTP a step-down procedure.
For the Hochberg [14] MTP, the local test uses cmi D 1=i , so the column entries of C are equal, which
makes the Hochberg MTP a step-up procedure. For the Hommel [15] MTP, the local test is the exact
Simes [22] test with cmi D .m � i C 1/=m, so neither the row nor the column entries of C is equal, and
consequently, the Hommel MTP does not have a simple step-down or step-up structure. The Hochberg
MTP is conservative compared with the Hommel MTP because the Simes test is exact, whereas the local
test underlying the Hochberg MTP is conservative because 1=i 6 .m � i C 1/=m for i D 1; : : : ; m with
equality only for i D 1 and i D m.

Proof of Theorem 1
The C -matrix corresponding to the local Bonferroni test (7) of H.I/ is given by266666666666666664

�
1

C 1��
n�kC1

�
2

C 1��
n�kC1

�
2

C 1��
n�kC1

:::
:::

: : :

�
n�k

C 1��
n�kC1

�
n�k

C 1��
n�kC1

: : : �
n�k

C 1��
n�kC1

1
n�kC1

1
n�kC1

: : : 1
n�kC1

1
n�kC1

:::
:::

:::
:::

: : :

1
n

1
n

: : : 1
n

: : : 1
n

377777777777777775
:

We see that the row entries are constant, and hence, the exact shortcut to the closed MTP based on these
local tests of H.I/ is the step-down k-truncated Holm MTP given in (6) whose critical constants are
given by the first column of C . Because the Bonferroni test is conservative, the k-truncated Holm MTP
controls the FWER conservatively at level ˛. �

Proof of Theorem 2
The C -matrix corresponding to the local test (10) of H.I/ is given by

266666666666666666664

� C 1��
n�kC1

� C 1��
n�kC1

�
2

C 1��
n�kC1

:::
:::

: : :

� C 1��
n�kC1

�
2

C 1��
n�kC1

: : : �
n�k

C 1��
n�kC1

� C 1��
n�kC1

�
2

C 1��
n�kC1

: : : �
n�k

C 1��
n�kC1

1
n�kC1

� C 1��
n�kC1

�
2

C 1��
n�kC1

: : : �
n�k

C 1��
n�kC1

1
n�kC1

1
n�kC2

:::
:::

:::
:::

:::
:::

: : :

� C 1��
n�kC1

�
2

C 1��
n�kC1

: : : �
n�k

C 1��
n�kC1

1
n�kC1

1
n�kC2

: : : 1
n

377777777777777777775

(A.3)

Note that the column entries are constant, and hence, the shortcut to the closed MTP based on these local
tests is a step-up MTP. The critical constants of the resulting k-truncated Hochberg MTP (9) are given
by the last row of C .

This closed MTP is conservative because it tests each H.I/ at level 6 ˛.I /, which can be seen
as follows. As noted before, the Hochberg MTP is a step-up shortcut to the closed MTP that tests
each intersection hypothesis H.I/ with jI j D m conservatively at level ˛ using critical constants
˛=i .i D 1; : : : ; m/ in (A.2). Replacing ˛ by ˛.I / given by (4), we see that this closed MTP rejects
any intersection hypothesis H.I/ if for at least one i 2 I ,

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335
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p.m�iC1/ 6

8<:
h
� C .1��/m

n�kC1

i
˛
i

if 1 6 m 6 n � k

˛
i

if m > n � k
(A.4)

The C -matrix corresponding to this local test does not have constant column entries because, for any
given i , we see that the cmi values are different for m 6 n � k and m > n � k; hence, it does not
have a step-up shortcut. On the other hand, the column entries in the C -matrix of (A.3) are constant.
Furthermore, they are conservative because they are smaller than the corresponding entries from (A.4),
which can be seen as follows. First, for m 6 n � k,

�

i
C 1 � �

n � k C 1
6

�
� C .1 � �/m

n � k C 1

	
1

i
:

Next, for m > n � k, if i 6 n � k, then

�

i
C 1 � �

n � k C 1
6 1

i
;

and if i > n � k, then the entries of the two C -matrices are the same, both equal to 1=i . Therefore, the
k-truncated Hochberg MTP based on the closed MTP (10) is conservative. �

Proof of Theorem 3
The C -matrix corresponding to (11) is given by2666666666666666666666664

� C 1��
n�kC1

� C 1��
n�kC1

�
2

C 1��
n�kC1

� C 1��
n�kC1

2�
3

C 1��
n�kC1

�
3

C 1��
n�kC1

:::
:::

:::
: : :

� C 1��
n�kC1

.n�k/�
n�kC1

C 1��
n�kC1

: : : �
n�kC1

C 1��
n�kC1

1 n�kC1
n�kC2

: : : 2
n�kC2

1
n�kC2

1 n�kC2
n�kC3

: : : 3
n�kC3

2
n�kC3

1
n�kC3

:::
:::

:::
:::

:::
:::

: : :

1 n�1
n

: : : k
n

k�1
n

k�2
n

: : : 1
n

3777777777777777777777775
(A.5)

This closed MTP is conservative because it tests each H.I/ at level 6 ˛.I /, which can be seen as
follows. As noted before, the Hommel MTP is a shortcut to the closed MTP that controls the FWER
requirement (1) with the Simes test critical constants cmi˛ D .m � i C 1/˛=m .i D 1; : : : ; m/ to test
all intersection hypotheses H.I/ with jI j D m. Replacing ˛ by ˛.I / given by (4), we see that the
˛.I /-level closed MTP rejects any intersection hypothesis H.I/ if, for at least one i 2 I ,

p.m�iC1/ 6

8<:
.m�iC1/˛

m

h
� C .1��/m

n�kC1

i
if m 6 n � k

.m�iC1/˛
m

if m > n � k

(A.6)

The corresponding entries of the C -matrix (A.5) are smaller, which can be seen as follows. First, for
m 6 n � k,

.m � i C 1/�

m
C 1 � �

n � k C 1
6 .m � i C 1/

m

�
� C .1 � �/ m

n � k C 1

	
;

and for m > n � k, the entries in the two matrices are the same, both equal to .m � i C 1/=m, so the
proposed k-truncated Hommel MTP is conservative because it is based on a closed MTP that tests each
H.I/ at level 6 ˛.I /.

1332

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1321–1335



D. XI AND A. C. TAMHANE

Next, we show that the k-truncated Hommel MTP stated in Section 3.5 is a shortcut to the closed
MTP (11). The proof is analogous to the one for the untruncated Hommel MTP [32]. Suppose that the
k-truncated Hommel MTP stops at Step i .1 6 i 6 n � k C 1/ and rejects a hypothesis H.j / with

p.j / 6
�

�

i � 1
C 1 � �

n � k C 1

�
˛;

where j 2 f1; : : : ; n � i C 1g. Then, it accepts H.j C1/; : : : ; H.n/. It is easy to see that
Tn

`Dn�iC2 H.`/

is accepted by the closed procedure at the .i � 1/th step. For ` 2 fj C 1; : : : ; n � i C 1g,�Tn
j Dn�iC3 H.j /

� T
H.`/ will be accepted because p.`/ > . �

i�1
C 1��

n�kC1
/˛. Thus, H.j C1/; : : : ; H.n/

are accepted by the closed procedure. In contrast, each H.J / D T
.`/2J H.`/, with J D f.i1/; : : : ; .ir/g,

fi1; : : : ; ir0
g � f1; : : : ; j g, and fir0

; : : : ; irg � fj C 1; : : : ; ng (1 6 r0 6 r), will be rejected because

max
16q6r0

.p.iq// 6 p.j / 6
�

�

i � 1
C 1 � �

n � k C 1

�
˛ 6

�
�

r � r0

C 1 � �

n � k C 1

�
˛

by noting that r � r0 6 i � 1. So individual hypotheses H.1/; : : : ; H.j / will be rejected. Thus, the
two methods give the same rejections when the k-truncated Hommel MTP stops at the i th step,
i D 1; : : : ; n � k C 1. The same result can be shown when i D n � k C 2; : : : ; n. �

Proof of Theorem 4
The proof of Proposition 4.1 from [21] applies here without any change because it does not utilize the
fact that the multistage MTP is for parallel gatekeeping (k D 1). It only depends on the definitions of the
FWER and the error rate function, which are the same for k-out-of-n gatekeeping. �

Proof of Theorem 5
First, we prove (15). Consider increasing ˛ beginning at 0. As long as ˛ < ep.k1/, no secondary
hypothesis can be rejected because r < k1. The smallest ˛ at which both r D k1 and Hj are rejected,
that is,

Npj 6 ˛2 D .1 � �/˛

n1 � k1 C 1
;

is ˛ D ep.k1/, and so epj D ep.k1/.
Next, let us prove (17). Let r1 denote the smallest r .k1 6 r 6 n1 �2/, which simultaneously satisfiesep.r/ 6 ˛ < ep.rC1/ (so that r primary hypotheses are rejected) and

Npj 6 ˛2 D .1 � �/.r � k1 C 1/˛

n1 � k1 C 1
:

Combination of these two inequalities is

.1 � �/.r � k1 C 1/ep.r/

n1 � k1 C 1
6 Npj <

.1 � �/.r � k1 C 1/ep.rC1/

n1 � k1 C 1
(A.7)

which is (16). Substituting r D r1 in the aforementioned inequality and solving for ˛ give the first
equation in (17).

If we increase ˛ from ep.r1/ to ep.r1C1/ so that r1 ! r1 C 1, then the inequality (A.7) becomes

.1 � �/.r1 � k1 C 2/ep.r1C1/

n1 � k1 C 1
6 Npj <

.1 � �/.r1 � k1 C 2/ep.r1C2/

n1 � k1 C 1
(A.8)

We need to determine epj when Npj is between the upper limit of (A.7) and the lower limit of (A.8), that
is, when

.1 � �/.r1 � k1 C 1/ep.r1C1/

n1 � k1 C 1
6 Npj <

.1 � �/.r1 � k1 C 2/ep.r1C1/

n1 � k1 C 1
:
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In this case, the number of rejected primary hypotheses equals r1 C 1, and so the condition for rejection
of Hj is

Npj 6 ˛2 D .1 � �/.r1 � k1 C 2/˛

n1 � k1 C 1
;

and the smallest ˛ for which this inequality is satisfied is epj D ep.r1C1/, which is the second equation
in (17).

To prove (18), we set r1 D n1 � 1. The proofs of the first two equations are similar to those given
earlier of the two equations in (17) except that the upper limit of the range of Npj is ep.n1/ in the second
equation. This is because if Npj > ep.n1/, then by setting ˛ D Npj , we get r D n1 because ep.n1/ 6 Npj D ˛.
Because all n1 primary hypotheses are rejected, we have ˛2 D ˛ D Npj , which is the smallest value of ˛

at which Hj is rejected. This proves the last equation of (18). �
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